A semantic completeness proof for tamed

  • Authors:
  • Richard Bonichon;Olivier Hermant

  • Affiliations:
  • Université Paris 6 – LIP6, Paris, France;Université Paris 6 – LIP6, Paris, France

  • Venue:
  • LPAR'06 Proceedings of the 13th international conference on Logic for Programming, Artificial Intelligence, and Reasoning
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Deduction modulo is a theoretical framework designed to introduce computational steps in deductive systems. This approach is well suited to automated theorem proving and a tableau method for first-order classical deduction modulo has been developed. We reformulate this method and give an (almost constructive) semantic completeness proof. This new proof allows us to extend the completeness theorem to several classes of rewrite systems used for computations in deduction modulo. We are then able to build a counter-model when a proof fails for these systems.