Seifert's RSA fault attack: simplified analysis and generalizations

  • Authors:
  • James A. Muir

  • Affiliations:
  • School of Computer Science, Carleton University, Ottawa, Canada

  • Venue:
  • ICICS'06 Proceedings of the 8th international conference on Information and Communications Security
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Seifert (ACM CCS 2005) recently described a new fault attack against an implementation of RSA signature verification. Seifert's attack differs from the seminal work of Boneh, DeMillo and Lipton (EUROCRYPT 1997) in that it targets a public-key rather than a private-key operation. Here we give a simplified analysis of Seifert's attack and gauge its practicality against RSA moduli of practical sizes. Our intent is to give practice-oriented work estimates rather than asymptotic results. We also suggest an improvement to Seifert's attack which has the following consequences: If an adversary is able to cause random faults in only 4 bits of a 1024-bit RSA modulus stored in a device, then there is a greater than 50% chance that they will be able to make that device accept a signature on a message of their choice. For 2048-bit RSA, 6 bits suffice.