A self-assembly model of time-dependent glue strength

  • Authors:
  • Sudheer Sahu;Peng Yin;John H. Reif

  • Affiliations:
  • Department of Computer Science, Duke University, Durham, NC;Department of Computer Science, Duke University, Durham, NC;Department of Computer Science, Duke University, Durham, NC

  • Venue:
  • DNA'05 Proceedings of the 11th international conference on DNA Computing
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a self-assembly model in which the glue strength between two juxtaposed tiles is a function of the time they have been in neighboring positions. We then present an implementation of our model using strand displacement reactions on DNA tiles. Under our model, we can demonstrate and study catalysis and self-replication in the tile assembly. We then study the tile complexity for assembling shapes in our model and show that a thin rectangle of size k ×N can be assembled using $O(\frac{\log N}{\log \log N})$ types of tiles.