An incremental model for combinatorial maximization problems

  • Authors:
  • Jeff Hartline;Alexa Sharp

  • Affiliations:
  • Cornell University, Ithaca, NY;Cornell University, Ithaca, NY

  • Venue:
  • WEA'06 Proceedings of the 5th international conference on Experimental Algorithms
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many combinatorial optimization problems aim to select a subset of elements of maximum value subject to certain constraints. We consider an incremental version of such problems, in which some of the constraints rise over time. A solution is a sequence of feasible solutions, one for each time step, such that later solutions build on earlier solutions incrementally. We introduce a general model for such problems, and define incremental versions of maximum flow, bipartite matching, and knapsack. We find that imposing an incremental structure on a problem can drastically change its complexity. With this in mind, we give general yet simple techniques to adapt algorithms for optimization problems to their respective incremental versions, and discuss tightness of these adaptations with respect to the three aforementioned problems.