Invariance of function complexity under primitive recursive functions

  • Authors:
  • John R. Woodward

  • Affiliations:
  • The University of Birmingham, Birmingham, UK

  • Venue:
  • EuroGP'06 Proceedings of the 9th European conference on Genetic Programming
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Genetic Programming (GP) [1] often uses a tree form of a graph to represent solutions. An extension to this representation, Automatically Defined Functions (ADFs) [1] is to allow the ability to express modules. In [2] we proved that the complexity of a function is independent of the primitive set (function set and terminal set) if the representation has the ability to express modules. This is essentially due to the fact that if a representation can express modules, then it can effectively define its own primitives at a constant cost. This is reminiscent of the result that the complexity of a bit string is independent of the choice of Universal Turing Machine (UTM) (within an additive constant) [3], the constant depending on the UTM but not on the function. The representations typically used in GP are not capable of expressing recursion, however a few researchers have introduced recursion into their representations. These representations are then capable of expressing a wider classes of functions, for example the primitive recursive functions (PRFs). We prove that given two representations which express the PRFs (and only the PRFs), the complexity of a function with respect to either of these representations is invariant within an additive constant. This is in the same vein as the proof of the invariants of Kolmogorov complexity [3] and the proof in [2].