P-CAGE: an environment for evolutionary computation in peer-to-peer systems

  • Authors:
  • Gianluigi Folino;Giandomenico Spezzano

  • Affiliations:
  • Institute for High Performance Computing and Networking (ICAR)-CNR, Rende(CS), Italy;Institute for High Performance Computing and Networking (ICAR)-CNR, Rende(CS), Italy

  • Venue:
  • EuroGP'06 Proceedings of the 9th European conference on Genetic Programming
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Solving complex real-world problems using evolutionary computation is a CPU time-consuming task that requires a large amount of computational resources. Peer-to-Peer (P2P) computing has recently revealed as a powerful way to harness these resources and efficiently deal with such problems. In this paper, we present a P2P implementation of Genetic Programming based on the JXTA technology. To run genetic programs we use a distributed environment based on a hybrid multi-island model that combines the island model with the cellular model. Each island adopts a cellular genetic programming model and the migration occurs among neighboring peers. The implementation is based on a virtual ring topology. Three different termination criteria (effort, time and max-gen) have been implemented. Experiments on some popular benchmarks show that the approach presents a accuracy at least comparable with classical distributed models, retaining the obvious advantages in terms of decentralization, fault tolerance and scalability of P2P systems.