Toward an application support layer: numerical computation in unified parallel c

  • Authors:
  • Jonathan Leighton Brown;Zhaofang Wen

  • Affiliations:
  • University of Michigan, Ann Arbor, MI;Sandia National Laboratories, Albuquerque, NM

  • Venue:
  • PPAM'05 Proceedings of the 6th international conference on Parallel Processing and Applied Mathematics
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Unified Parallel C is a parallel language extension to standard C. Data in UPC are communicated through shared arrays, which are physically distributed. Thus, data regions have locality, or affinity, to particular threads of execution. This affinity concept engenders a non-uniformity in shared memory accesses by a particular thread. Affinity should be considered when building data structures in algorithms and applications, but UPC provides limited tools for data locality management. We propose the creation of an application support layer to support a wide variety of common data decompositions and programming idioms. We present here a first step for this layer with a selection of mapping functions and packages for numerical computation and dense matrix operations. These are driven by specific algorithms from linear algebra and numerical computation, and could be readily incorporated in such an application support layer.