White matter tract clustering and correspondence in populations

  • Authors:
  • Lauren O’Donnell;Carl-Fredrik Westin

  • Affiliations:
  • MIT Computer Science and Artificial Intelligence Lab;MIT Computer Science and Artificial Intelligence Lab

  • Venue:
  • MICCAI'05 Proceedings of the 8th international conference on Medical Image Computing and Computer-Assisted Intervention - Volume Part I
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a novel method for finding white matter fiber correspondences and clusters across a population of brains. Our input is a collection of paths from tractography in every brain. Using spectral methods we embed each path as a vector in a high dimensional space. We create the embedding space so that it is common across all brains, consequently similar paths in all brains will map to points near each other in the space. By performing clustering in this space we are able to find matching fiber tract clusters in all brains. In addition, we automatically obtain correspondence of tractographic paths across brains: by selecting one or several paths of interest in one brain, the most similar paths in all brains are obtained as the nearest points in the high-dimensional space.