Deformable registration of diffusion tensor MR images with explicit orientation optimization

  • Authors:
  • Hui Zhang;Paul A. Yushkevich;James C. Gee

  • Affiliations:
  • Department of Computer & Information Science, University of Pennsylvania;Department of Radiology, University of Pennsylvania;Department of Radiology, University of Pennsylvania

  • Venue:
  • MICCAI'05 Proceedings of the 8th international conference on Medical Image Computing and Computer-Assisted Intervention - Volume Part I
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we present a novel deformable registration algorithm for diffusion tensor (DT) MR images that enables explicit analytic optimization of tensor reorientation. The optimization seeks a piecewise affine transformation that divides the image domain into uniform regions and transforms each of them affinely. The objective function captures both the image similarity and the smoothness of the transformation across region boundaries. The image similarity enables explicit orientation optimization by incorporating tensor reorientation, which is necessary for warping DT images. The objective function is formulated in a way that allows explicit implementation of analytic derivatives to drive fast and accurate optimization using the conjugate gradient method. The optimal transformation is hierarchically refined in a subdivision framework. A comparison with affine registration for inter-subject normalization of 8 subjects shows that our algorithm improves the alignment of manually segmented white matter structures (corpus callosum and cortio-spinal tracts).