Using clustering to address heterogeneity and dynamism in parallel scientific applications

  • Authors:
  • Xiaolin Li;Manish Parashar

  • Affiliations:
  • Department of Computer Science, Oklahoma State University, OK;Department of Electrical & Computer Engineering, Rutgers University, NJ

  • Venue:
  • HiPC'05 Proceedings of the 12th international conference on High Performance Computing
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The dynamism and space-time heterogeneity exhibited by structured adaptive mesh refinement (SAMR) applications makes their scalable parallel implementation a significant challenge. This paper investigates an adaptive hierarchical multi-partitioner (AHMP) framework that dynamically applies multiple partitioners to different regions of the domain, in a hierarchical manner, to match the local requirements of these regions. Key components of the AHMP framework include a segmentation-based clustering algorithm (SBC) for identifying regions in the domain with relatively homogeneous partitioning requirements, mechanisms for characterizing the partitioning requirements, and a runtime system for selecting, configuring and applying the most appropriate partitioner to each region. The AHMP framework has been implemented and experimentally evaluated on up to 1280 processors of the IBM SP4 cluster at San Diego Supercomputer Center.