Defensive prediction with expert advice

  • Authors:
  • Vladimir Vovk

  • Affiliations:
  • Computer Learning Research Centre, Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, England

  • Venue:
  • ALT'05 Proceedings of the 16th international conference on Algorithmic Learning Theory
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The theory of prediction with expert advice usually deals with countable or finite-dimensional pools of experts. In this paper we give similar results for pools of decision rules belonging to an infinite-dimensional functional space which we call the Fermi–Sobolev space. For example, it is shown that for a wide class of loss functions (including the standard square, absolute, and log loss functions) the average loss of the master algorithm, over the first N steps, does not exceed the average loss of the best decision rule with a bounded Fermi–Sobolev norm plus O(N−−1/2). Our proof techniques are very different from the standard ones and are based on recent results about defensive forecasting. Given the probabilities produced by a defensive forecasting algorithm, which are known to be well calibrated and to have high resolution in the long run, we use the Expected Loss Minimization principle to find a suitable decision.