A co-evolutionary epidemiological model for artificial life and death

  • Authors:
  • Alan Dorin

  • Affiliations:
  • Centre for Electronic Media Art, Computer Science & Software Engineering, Monash University, Clayton, Australia

  • Venue:
  • ECAL'05 Proceedings of the 8th European conference on Advances in Artificial Life
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a model of the co-evolution of transmissible disease and a population of non-randomly mixed susceptible agents. The presence of the disease elements is shown to prevent the onset of genetic convergence of the agent population. The epidemiological model also acts in a distributed fashion to counter the tendency of the agent population to occupy spatially close-knit communities. The simulation applies a modified mathematical SIR epidemiological model of disease transmission in combination with the well-studied technique of artificial ecosystems. It includes various aspects of disease transmission that are not usually modelled due to the effort required to incorporate them into mathematical models. These include a distributed agent population with non-uniform infectiousness and immunity as well as a mutable disease model with evolving latency and infections that evolve to prey on diverse agent characteristics.