Improved variance-based fractal image compression using neural networks

  • Authors:
  • Yiming Zhou;Chao Zhang;Zengke Zhang

  • Affiliations:
  • Department of Automation, Tsinghua University, Beijing, China;Department of Automation, Tsinghua University, Beijing, China;Department of Automation, Tsinghua University, Beijing, China

  • Venue:
  • ISNN'06 Proceedings of the Third international conference on Advnaces in Neural Networks - Volume Part II
  • Year:
  • 2006

Quantified Score

Hi-index 0.02

Visualization

Abstract

Although the baseline fractal image encoding algorithm could obtain very high compression ratio in contrast with other compression methods, it needs a great deal of encoding time, which limits it to widely practical applications. In recent years, an accelerating algorithm based on variance is addressed and has shortened the encoding time greatly; however, in the meantime, the image fidelity is obviously diminished. In this paper, a neural network is utilized to modify the variance-based encoding algorithm, which makes the quality of reconstructed images improved remarkably as the encoding time is significantly reduced. Experimental results show that the reconstructed images quality measured by peak-signal-to-noise-ratio is better than conventional variance-based algorithm, while the time consumption for encoding and the compression ratio are almost the same as the conventional variance-based algorithm.