A refined performance characterization of longest-queue-first policy in wireless networks

  • Authors:
  • Bo Li;Cem Boyaci;Ye Xia

  • Affiliations:
  • Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL;Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL;Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

One of the major challenges in wireless networking is how to optimize the link scheduling decisions under interference constraints. Recently, a few algorithms have been introduced to address the problem. However, solving the problem to optimality for general wireless interference models is known to be NP-hard. The research community is currently focusing on finding simpler suboptimal scheduling algorithms and on characterizing the algorithm performance. In this paper, we address the performance of a specific scheduling policy called Longest Queue First (LQF), which has gained significant recognition lately due to its simplicity and high efficiency in empirical studies. There has been a sequence of studies characterizing the guaranteed performance of the LQF schedule, culminating at the construction of the σ-local pooling concept by Joo et al. In this paper, we refine the notion of σ-local pooling and use the refinement to capture a larger region of guaranteed performance.