Motion primitive-based human activity recognition using a bag-of-features approach

  • Authors:
  • Mi Zhang;Alexander A. Sawchuk

  • Affiliations:
  • University of Southern California, Los Angeles, CA, USA;University of Southern California, Los Angeles, CA, USA

  • Venue:
  • Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Human activity modeling and recognition using wearable sensors is important in pervasive healthcare, with applications including quantitative assessment of motor function, rehabilitation, and elder care. Previous human activity recognition techniques use a "whole-motion" model in which continuous sensor streams are divided into windows with a fixed time duration whose length is chosen such that all the relevant information in each activity signal can be extracted from each window. In this paper, we present a statistical motion primitive-based framework for human activity representation and recognition. Our framework is based on Bag-of-Features (BoF), which builds activity models using histograms of primitive symbols. We experimentally validate the effectiveness the BoF-based framework for recognizing nine activity classes and evaluate six factors which impact the performance of the framework. The factors include window size, choices of features, methods to construct motion primitives, motion vocabulary size, weighting schemes of motion primitive assignments, and learning machine kernel functions. Finally, we demonstrate that our statistical BoF-based framework can achieve much better performance compared to a non-statistical string-matching-based approach.