Active shape models for a fully automated 3d segmentation of the liver – an evaluation on clinical data

  • Authors:
  • Tobias Heimann;Ivo Wolf;Hans-Peter Meinzer

  • Affiliations:
  • Medical and Biological Informatics, German Cancer Research Center, Heidelberg;Medical and Biological Informatics, German Cancer Research Center, Heidelberg;Medical and Biological Informatics, German Cancer Research Center, Heidelberg

  • Venue:
  • MICCAI'06 Proceedings of the 9th international conference on Medical Image Computing and Computer-Assisted Intervention - Volume Part II
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents an evaluation of the performance of a three-dimensional Active Shape Model (ASM) to segment the liver in 48 clinical CT scans. The employed shape model is built from 32 samples using an optimization approach based on the minimum description length (MDL). Three different gray-value appearance models (plain intensity, gradient and normalized gradient profiles) are created to guide the search. The employed segmentation techniques are ASM search with 10 and 30 modes of variation and a deformable model coupled to a shape model with 10 modes of variation. To assess the segmentation performance, the obtained results are compared to manual segmentations with four different measures (overlap, average distance, RMS distance and ratio of deviations larger 5mm). The only appearance model delivering usable results is the normalized gradient profile. The deformable model search achieves the best results, followed by the ASM search with 30 modes. Overall, statistical shape modeling delivers very promising results for a fully automated segmentation of the liver.