An energy minimization approach to the data driven editing of presegmented images/volumes

  • Authors:
  • Leo Grady;Gareth Funka-Lea

  • Affiliations:
  • Department of Imaging and Visualization, Siemens Corporate Research, Princeton, NJ;Department of Imaging and Visualization, Siemens Corporate Research, Princeton, NJ

  • Venue:
  • MICCAI'06 Proceedings of the 9th international conference on Medical Image Computing and Computer-Assisted Intervention - Volume Part II
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Fully automatic, completely reliable segmentation in medical images is an unrealistic expectation with today’s technology. However, many automatic segmentation algorithms may achieve a near-correct solution, incorrect only in a small region. For these situations, an interactive editing tool is required, ideally in 3D, that is usually left to a manual correction. We formulate the editing task as an energy minimization problem that may be solved with a modified version of either graph cuts or the random walker 3D segmentation algorithms. Both algorithms employ a seeded user interface, that may be used in this scenario for a user to seed erroneous voxels as belonging to the foreground or the background. In our formulation, it is unnecessary for the user to specify both foreground and background seeds.