Multi-resolution vessel segmentation using normalized cuts in retinal images

  • Authors:
  • Wenchao Cai;Albert C. S. Chung

  • Affiliations:
  • Lo Kwee-Seong Medical Image Analysis Laboratory, Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong;Lo Kwee-Seong Medical Image Analysis Laboratory, Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong

  • Venue:
  • MICCAI'06 Proceedings of the 9th international conference on Medical Image Computing and Computer-Assisted Intervention - Volume Part II
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Retinal vessel segmentation is an essential step of the diagnoses of various eye diseases. In this paper, we propose an automatic, efficient and unsupervised method based on gradient matrix, the normalized cut criterion and tracking strategy. Making use of the gradient matrix of the Lucas-Kanade equation, which consists of only the first order derivatives, the proposed method can detect a candidate window where a vessel possibly exists. The normalized cut criterion, which measures both the similarity within groups and the dissimilarity between groups, is used to search a local intensity threshold to segment the vessel in a candidate window. The tracking strategy makes it possible to extract thin vessels without being corrupted by noise. Using a multi-resolution segmentation scheme, vessels with different widths can be segmented at different resolutions, although the window size is fixed. Our method is tested on a public database. It is demonstrated to be efficient and insensitive to initial parameters.