Reasoning about states of probabilistic sequential programs

  • Authors:
  • R. Chadha;P. Mateus;A. Sernadas

  • Affiliations:
  • SQIG – IT and IST, Portugal;SQIG – IT and IST, Portugal;SQIG – IT and IST, Portugal

  • Venue:
  • CSL'06 Proceedings of the 20th international conference on Computer Science Logic
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

A complete and decidable propositional logic for reasoning about states of probabilistic sequential programs is presented. The state logic is then used to obtain a sound Hoare-style calculus for basic probabilistic sequential programs. The Hoare calculus presented herein is the first probabilistic Hoare calculus with a complete and decidable state logic that has truth-functional propositional (not arithmetical) connectives. The models of the state logic are obtained exogenously by attaching sub-probability measures to valuations over memory cells. In order to achieve complete and recursive axiomatization of the state logic, the probabilities are taken in arbitrary real closed fields.