Voronoi-Based improved algorithm for connected coverage problem in wireless sensor networks

  • Authors:
  • Jie Jiang;Zhen Song;Heying Zhang;Wenhua Dou

  • Affiliations:
  • School of Computer, National University of Defense Technology, Changsha, China;School of Computer, National University of Defense Technology, Changsha, China;School of Computer, National University of Defense Technology, Changsha, China;School of Computer, National University of Defense Technology, Changsha, China

  • Venue:
  • EUC'05 Proceedings of the 2005 international conference on Embedded and Ubiquitous Computing
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we consider the connected coverage problem and aim to construct a minimal connected cover set that is sufficient for a given query in wireless sensor networks. We propose a centralized, Voronoi tessellation (CVT) based algorithm to select the minimum number of active sensor nodes needed to cover the target region completely. The constructed sensor set proves to be connected when sensor node’s communication range is at least twice of its sensing range. For other situations where the CVT algorithm alone cannot guarantee the network connectivity, we design a Steiner minimum tree (SMT) based algorithm to ensure the network connectivity. Theoretical analysis and simulation results show that our algorithm outperforms the greedy algorithm in terms of both the time complexity and the needed number of sensor nodes that must be kept active to respond to a given query.