Analysis of properties of petri synthesis net

  • Authors:
  • Chuanliang Xia

  • Affiliations:
  • Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

  • Venue:
  • TAMC'06 Proceedings of the Third international conference on Theory and Applications of Models of Computation
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Petri net synthesis can avoid the state exploration problem, which is of exponential complexity, by guaranteeing the correctness in the Petri net while incrementally expanding the net. The conventional Petri net synthesis approaches, in general, suffer the drawback of only being able to synthesize a few classes of nets, such as state machines, marked graphs or asymmetric choice(AC) nets. However, the synthesis technique of Petri nets shared PP-type subnets can synthesize Petri nets beyond AC nets. One major advantage of the synthesis technique is that the resultant Petri net is guaranteed to be live, bounded and reversible. Most current synthesis techniques cannot handle systems with shared subsystems. To solve resource-sharing problem, Jiao L. presented the conditions for an AC net satisfying siphon-trap-property (ST-property) to be live, bounded and reversible[3]. The major motivation of this work is to generalize the results in [3] and to extend the resource-sharing technique to subsystem-sharing technique on AC nets or Petri nets beyond AC nets.