A new design methodology of fuzzy set-based polynomial neural networks with symbolic gene type genetic algorithms

  • Authors:
  • Seok-Beom Roh;Sung-Kwun Oh;Tae-Chon Ahn

  • Affiliations:
  • Department of Electrical Electronic and Information Engineering, Wonkwang University, Chon-Buk, South Korea;Department of Electrical Engineering, Suwon University, Gyeonggi-do, South Korea;Department of Electrical Electronic and Information Engineering, Wonkwang University, Chon-Buk, South Korea

  • Venue:
  • ISNN'06 Proceedings of the Third international conference on Advances in Neural Networks - Volume Part I
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we propose a new design methodology of fuzzy-neural networks – Fuzzy Set–based Polynomial Neural Networks (FSPNN) with symbolic genetic algorithms. We have developed a design methodology (genetic optimization using Symbolic Genetic Algorithms) to find the optimal structure for fuzzy-neural networks that expanded from Group Method of Data Handling (GMDH). It is the number of input variables, the order of the polynomial, the number of membership functions, and a collection of the specific subset of input variables that are the parameters of FSPNN fixed by aid of symbolic genetic optimization that has search capability to find the optimal solution on the solution space. The augmented and genetically developed FPNN (gFPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional FPNNs. The GA-based design procedure being applied at each layer of FPNN leads to the selection of the most suitable nodes (or FSPNs) available within the FPNN. Symbolic genetic algorithms are capable of reducing the solution space more than conventional genetic algorithms with binary genetype chromosomes. The performance of genetically optimized FSPNN (gFSPNN) with aid of symbolic genetic algorithms is quantified through experimentation where we use a number of modeling benchmarks data which are already experimented with in fuzzy or neurofuzzy modeling.