Managing traffic demand uncertainty in replica server placement with robust optimization

  • Authors:
  • Kin-Hon Ho;Stylianos Georgoulas;Mina Amin;George Pavlou

  • Affiliations:
  • Centre for Communication Systems Research, University of Surrey, UK;Centre for Communication Systems Research, University of Surrey, UK;Centre for Communication Systems Research, University of Surrey, UK;Centre for Communication Systems Research, University of Surrey, UK

  • Venue:
  • NETWORKING'06 Proceedings of the 5th international IFIP-TC6 conference on Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

The replica server placement problem determines the optimal location where replicated servers should be placed in content distribution networks, in order to optimize network performance. The estimated traffic demand is fundamental input to this problem and its accuracy is essential for the target performance to be achieved. However, deriving accurate traffic demands is far from trivial and uncertainty makes the target performance hard to predict. We argue that it is often inappropriate to optimize the performance for only a particular set of traffic demands that is assumed accurate. In this paper, we propose a scenario-based robust optimization approach to address the replica server placement problem under traffic demand uncertainty. The objective is to minimize the total distribution cost across a variety of traffic demand scenarios while minimizing the performance deviation from the optimal solution. Empirical results demonstrate that robust optimization for replica server placement can achieve good performance under all the traffic demand scenarios while non-robust approaches perform significantly worse. This approach allows content distribution providers to provision better and predictable quality of service for their customers by reducing the impact of inaccuracy in traffic demand estimation on the replica server placement optimization.