Efficiently computable endomorphisms for hyperelliptic curves

  • Authors:
  • David R. Kohel;Benjamin A. Smith

  • Affiliations:
  • School of Mathematics and Statistics, The University of Sydney;School of Mathematics and Statistics, The University of Sydney

  • Venue:
  • ANTS'06 Proceedings of the 7th international conference on Algorithmic Number Theory
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Elliptic curves have a well-known and explicit theory for the construction and application of endomorphisms, which can be applied to improve performance in scalar multiplication. Recent work has extended these techniques to hyperelliptic Jacobians, but one obstruction is the lack of explicit models of curves together with an efficiently computable endomorphism. In the case of hyperelliptic curves there are limited examples, most methods focusing on special CM curves or curves defined over a small field. In this article we describe three infinite families of curves which admit an efficiently computable endomorphism, and give algorithms for their efficient application.