Optimized clustering for maximal lifetime of wireless sensor networks

  • Authors:
  • Kyung Tae Kim;Hyunsoo Kim;Hee Yong Youn

  • Affiliations:
  • School of Information and Communication Engineering, Sungkyunkwan University, Suwon, Korea;School of Information and Communication Engineering, Sungkyunkwan University, Suwon, Korea;School of Information and Communication Engineering, Sungkyunkwan University, Suwon, Korea

  • Venue:
  • EUC'06 Proceedings of the 2006 international conference on Emerging Directions in Embedded and Ubiquitous Computing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Wireless sensor network consisting of a large number of small sensors is efficient in gathering data in a variety of environments. Since the sensor nodes operate on batteries, energy efficient operations are indispensable to maximize the lifetime of the network. Among the schemes proposed to improve the lifetime of the network, the cluster-based schemes aim to evenly distribute the energy consumption among all the nodes in the network. In this paper we propose an approach for finding an optimal number of clusters which allows minimal energy consumption of the network. The key idea of the proposed approach is to model the energy consumption with independent homogeneous spatial Poisson process, while considering the distribution of cluster-heads and other sensor nodes. With the number of cluster-heads obtained by the proposed approach, the energy consumption can be significantly reduced and consequently the lifetime of the sensor network is increased compared to the existing schemes. Computer simulation confirms this with practical operational environment.