Aspects of the Segre variety $${\mathcal{S}_{1,1,1}(2)}$$

  • Authors:
  • Ron Shaw;Neil Gordon;Hans Havlicek

  • Affiliations:
  • Centre for Mathematics, University of Hull, Hull, UK HU6 7RX;Department of Computer Science, University of Hull, Hull, UK HU6 7RX;Institut für Diskrete Mathematik und Geometrie, Technische Universität, Wien, Austria 1040

  • Venue:
  • Designs, Codes and Cryptography
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider various aspects of the Segre variety $${\mathcal{S}:=\mathcal{S} _{1,1,1}(2)}$$ in PG(7, 2), whose stabilizer group $${\mathcal{G}_{\mathcal{S}} has the structure $${\mathcal{N}\rtimes{\rm Sym}(3),}$$ where $${\mathcal{N} :={\rm GL}(2,2)\times{\rm GL}(2,2)\times{\rm GL} (2,2).}$$ In particular we prove that $${\mathcal{S}}$$ determines a distinguished Z 3-subgroup $${\mathcal{Z} such that $${A\mathcal{Z}A^{-1}=\mathcal{Z},}$$ for all $${A\in\mathcal{G}_{\mathcal{S}},}$$ and in consequence $${\mathcal{S}}$$ determines a $${\mathcal{G}_{\mathcal{S}}}$$ -invariant spread of 85 lines in PG(7, 2). Furthermore we see that Segre varieties $${\mathcal{S}_{1,1,1}(2)}$$ in PG(7, 2) come along in triplets $${\{\mathcal{S},\mathcal{S}^{\prime},\mathcal{S}^{\prime\prime}\}}$$ which share the same distinguished Z 3-subgroup $${\mathcal{Z} We conclude by determining all fifteen $${\mathcal{G}_{\mathcal{S}}}$$ -invariant polynomial functions on PG(7, 2) which have degree $${\mathcal{G}_{\mathcal{S}}}$$ -orbits of points in PG(7, 2).