Meta-cognitive Neural Network for classification problems in a sequential learning framework

  • Authors:
  • G. Sateesh Babu;S. Suresh

  • Affiliations:
  • School of Computer Engineering, Nanyang Technological University, Singapore;School of Computer Engineering, Nanyang Technological University, Singapore

  • Venue:
  • Neurocomputing
  • Year:
  • 2012

Quantified Score

Hi-index 0.01

Visualization

Abstract

In this paper, we propose a sequential learning algorithm for a neural network classifier based on human meta-cognitive learning principles. The network, referred to as Meta-cognitive Neural Network (McNN). McNN has two components, namely the cognitive component and the meta-cognitive component. A radial basis function network is the fundamental building block of the cognitive component. The meta-cognitive component controls the learning process in the cognitive component by deciding what-to-learn, when-to-learn and how-to-learn. When a sample is presented at the cognitive component of McNN, the meta-cognitive component chooses the best learning strategy for the sample using estimated class label, maximum hinge error, confidence of classifier and class-wise significance. Also sample overlapping conditions are considered in growth strategy for proper initialization of new hidden neurons. The performance of McNN classifier is evaluated using a set of benchmark classification problems from the UCI machine learning repository and two practical problems, viz., the acoustic emission for signal classification and a mammogram data set for cancer classification. The statistical comparison clearly indicates the superior performance of McNN over reported results in the literature.