Real-time detection of out-of-plane objects in stereo vision

  • Authors:
  • Weiguang Guan;Patricia Monger

  • Affiliations:
  • Dept. of Research and High Performance Computing, McMaster University, Hamilton, Ontario, Canada;Dept. of Research and High Performance Computing, McMaster University, Hamilton, Ontario, Canada

  • Venue:
  • ISVC'06 Proceedings of the Second international conference on Advances in Visual Computing - Volume Part I
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes an automatic approach to detecting objects appearing in front of planar background. A planar homography is estimated with high accuracy in an off-line initialization phase. Given a pair of binocular images, we apply the estimated homography to one of the images, and then compute a similarity map between the transformed image and the other. Normalized cross-correlation is used in the computation of the similarity map to measure the similarity between neighborhoods of overlapping pixels. Normalized cross-correlation measure is superior to absolute difference in alleviating the influence of image noise and small mis-alignment caused by imperfect homography estimation. The similarity map with pixel intensities ranging between 0 and 1 leads to an easy detection of out-of-plane objects because the values of pixels corresponding to planar background are close to 1. Tracking could be incorporated with our out-of-plane object detection method to further improve robustness in live video applications. This approach has been used in tracking people and demonstrated reliable performance.