Margin maximizing discriminant analysis for multi-shot based object recognition

  • Authors:
  • Hui Kong;Eam Khwang Teoh;Pengfei Xu

  • Affiliations:
  • Panasonic Singapore Labs, Singapore;School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore;Panasonic Singapore Labs, Singapore

  • Venue:
  • ISVC'06 Proceedings of the Second international conference on Advances in Visual Computing - Volume Part I
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper discusses general object recognition by using image set in the scenario where multiple shots are available for each object. As a way of matching sets of images, canonical correlations offer many benefits in accuracy, efficiency, and robustness compared to the classical parametric distribution-based and non-parametric sample-based methods. However, it is essentially an representative but not a discriminative way for all the previous methods in using canonical correlations for comparing sets of images. Our purpose is to define a transformation such that, in the transformed space, the sum of canonical correlations (the cosine value of the principle angles between any two subspaces) of the intra-class image sets can be minimized and meantime the sum of canonical correlations of the inter-class image sets can be maximized. This is done by learning a margin-maximized linear discriminant function of the canonical correlations. Finally, this transformation is derived by a novel iterative optimization process. In this way, a discriminative way of using canonical correlations is presented. The proposed method significantly outperforms the state-of-the-art methods for two different object recognition problems on two large databases: a celebrity face database which is constructed using Image Google and the ALOI database of generic objects where hundreds of sets of images are taken at different views.