FFT-based dense polynomial arithmetic on multi-cores

  • Authors:
  • Marc Moreno Maza;Yuzhen Xie

  • Affiliations:
  • Ontario Research Centre for Computer Algebra, University of Western Ontario, London, Canada;Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge

  • Venue:
  • HPCS'09 Proceedings of the 23rd international conference on High Performance Computing Systems and Applications
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

We report efficient implementation techniques for FFT-based dense multivariate polynomial arithmetic over finite fields, targeting multi-cores. We have extended a preliminary study dedicated to polynomial multiplication and obtained a complete set of efficient parallel routines in Cilk++ for polynomial arithmetic such as normal form computation. Since bivariate multiplication applied to balanced data is a good kernel for these routines, we provide an in-depth study on the performance and the cut-off criteria of our different implementations for this operation. We also show that, not only optimized parallel multiplication can improve the performance of higher-level algorithms such as normal form computation but also this composition is necessary for parallel normal form computation to reach peak performance on a variety of problems that we have tested.