Maximum echo-state-likelihood networks for emotion recognition

  • Authors:
  • Edmondo Trentin;Stefan Scherer;Friedhelm Schwenker

  • Affiliations:
  • Dipartimento di Ingegneria dell’Informazione, Università degli studi di Siena, Siena, Italy;Institute of Neural Information Processing, Ulm University, Ulm, Germany;Institute of Neural Information Processing, Ulm University, Ulm, Germany

  • Venue:
  • ANNPR'10 Proceedings of the 4th IAPR TC3 conference on Artificial Neural Networks in Pattern Recognition
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Emotion recognition is a relevant task in human-computer interaction. Several pattern recognition and machine learning techniques have been applied so far in order to assign input audio and/or video sequences to specific emotional classes. This paper introduces a novel approach to the problem, suitable also to more generic sequence recognition tasks. The approach relies on the combination of the recurrent reservoir of an echo state network with a connectionist density estimation module. The reservoir realizes an encoding of the input sequences into a fixed-dimensionality pattern of neuron activations. The density estimator, consisting of a constrained radial basis functions network, evaluates the likelihood of the echo state given the input. Unsupervised training is accomplished within a maximum-likelihood framework. The architecture can then be used for estimating class-conditional probabilities in order to carry out emotion classification within a Bayesian setup. Preliminary experiments in emotion recognition from speech signals from the WaSeP© dataset show that the proposed approach is effective, and it may outperform state-of-the-art classifiers.