Revising the trade-off between the number of agents and agent intelligence

  • Authors:
  • Marcus Komann;Dietmar Fey

  • Affiliations:
  • Friedrich-Schiller-University Jena, Jena, Germany;University of Erlangen-Nürnberg, Erlangen, Germany

  • Venue:
  • EvoApplicatons'10 Proceedings of the 2010 international conference on Applications of Evolutionary Computation - Volume Part I
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Emergent agents are a promising approach to handle complex systems. Agent intelligence is thereby either defined by the number of states and the state transition function or the length of their steering programs. Evolution has shown to be successful in creating desired behaviors for such agents. Genetic algorithms have been used to find agents with fixed numbers of states and genetic programming is able to balance between the steering program length and the costs for longer programs. This paper extends previous work by further discussing the relationship between either using more agents with less intelligence or using fewer agents with higher intelligence. Therefore, the Creatures’ Exploration Problem with a complex input set is solved by evolving emergent agents. It shows that neither a sole increase in intelligence nor amount is the best solution. Instead, a cautious balance creates best results.