Contraction of timetable networks with realistic transfers

  • Authors:
  • Robert Geisberger

  • Affiliations:
  • Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

  • Venue:
  • SEA'10 Proceedings of the 9th international conference on Experimental Algorithms
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We contribute a fast routing algorithm for timetable networks with realistic transfer times. In this setting, our algorithm is the first one that successfully applies precomputation based on node contraction: gradually removing nodes from the graph and adding shortcuts to preserve shortest paths. This reduces query times to 0.5 ms with preprocessing times below 4 minutes on all tested instances, even on continental networks with 30 000 stations. We achieve this by an improved contraction algorithm and by using a station graph model. Every node in our graph has a one-to-one correspondence to a station and every edge has an assigned collection of connections. Also, our graph model does not require parallel edges.