Grammatical evolution decision trees for detecting gene-gene interactions

  • Authors:
  • Sushamna Deodhar;Alison Motsinger-Reif

  • Affiliations:
  • Department of Computer Science, North Carolina State University, Raleigh, NC;Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC

  • Venue:
  • EvoBIO'10 Proceedings of the 8th European conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

A fundamental goal of human genetics is the discovery of polymorphisms that predict common, complex diseases. It is hypothesized that complex diseases are due to a myriad of factors including environmental exposures and complex genetic risk models, including gene-gene interactions. Such interactive models present an important analytical challenge, requiring that methods perform both variable selection and statistical modeling to generate testable genetic model hypotheses. Decision trees are a highly successful, easily interpretable data-mining method that are typically optimized with a hierarchical model building approach, which limits their potential to identify interactive effects. To overcome this limitation, we utilize evolutionary computation, specifically grammatical evolution, to build decision trees to detect and model gene-gene interactions. Currently, we introduce the Grammatical Evolution Decision Trees (GEDT) method, and demonstrate that GEDT has power to detect interactive models in a range of simulated data, revealing GEDT to be a promising new approach for human genetics.