Learning and classifying under hard budgets

  • Authors:
  • Aloak Kapoor;Russell Greiner

  • Affiliations:
  • Department of Computing Science, University of Alberta, Edmonton, AB;Department of Computing Science, University of Alberta, Edmonton, AB

  • Venue:
  • ECML'05 Proceedings of the 16th European conference on Machine Learning
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Since resources for data acquisition are seldom infinite, both learners and classifiers must act intelligently under hard budgets. In this paper, we consider problems in which feature values are unknown to both the learner and classifier, but can be acquired at a cost. Our goal is a learner that spends its fixed learning budget bL acquiring training data, to produce the most accurate “active classifier” that spends at most bC per instance. To produce this fixed-budget classifier, the fixed-budget learner must sequentially decide which feature values to collect to learn the relevant information about the distribution. We explore several approaches the learner can take, including the standard “round robin” policy (purchasing every feature of every instance until the bL budget is exhausted). We demonstrate empirically that round robin is problematic (especially for small bL), and provide alternate learning strategies that achieve superior performance on a variety of datasets.