Towards finite-sample convergence of direct reinforcement learning

  • Authors:
  • Shiau Hong Lim;Gerald DeJong

  • Affiliations:
  • Dept. of Computer Science, University of Illinois, Urbana-Champaign;Dept. of Computer Science, University of Illinois, Urbana-Champaign

  • Venue:
  • ECML'05 Proceedings of the 16th European conference on Machine Learning
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

While direct, model-free reinforcement learning often performs better than model-based approaches in practice, only the latter have yet supported theoretical guarantees for finite-sample convergence. A major difficulty in analyzing the direct approach in an online setting is the absence of a definitive exploration strategy. We extend the notion of admissibility to direct reinforcement learning and show that standard Q-learning with optimistic initial values and constant learning rate is admissible. The notion justifies the use of a greedy strategy that we believe performs very well in practice and holds theoretical significance in deriving finite-sample convergence for direct reinforcement learning. We present empirical evidence that supports our idea.