Cayley DHTs — a group-theoretic framework for analyzing DHTs based on cayley graphs

  • Authors:
  • Changtao Qu;Wolfgang Nejdl;Matthias Kriesell

  • Affiliations:
  • L3S and University of Hannover, Hannover, Germany;L3S and University of Hannover, Hannover, Germany;Institute of Mathematics (A), University of Hannover, Hannover, Germany

  • Venue:
  • ISPA'04 Proceedings of the Second international conference on Parallel and Distributed Processing and Applications
  • Year:
  • 2004

Quantified Score

Hi-index 0.00

Visualization

Abstract

Static DHT topologies influence important features of such DHTs such as scalability, communication load balancing, routing efficiency and fault tolerance. While obviously dynamic DHT algorithms which have to approximate these topologies for dynamically changing sets of peers play a very important role for DHT networks, important insights can be gained by clearly focussing on the static DHT topology as well. In this paper we analyze and classify current DHTs in terms of their static topologies based on the Cayley graph group-theoretic model and show that most DHT proposals use Cayley graphs as static DHT topologies, thus taking advantage of several important Cayley graph properties such as vertex/edge symmetry, decomposability and optimal fault tolerance. Using these insights, Cayley DHT design can directly leverage algebraic design methods to generate high-performance DHTs adopting Cayley graph based static DHT topologies, extended with suitable dynamic DHT algorithms.