Computing replacement paths in surface embedded graphs

  • Authors:
  • Jeff Erickson;Amir Nayyeri

  • Affiliations:
  • University of Illinois at Urbana-Champaign;University of Illinois at Urbana-Champaign

  • Venue:
  • Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Let s and t be vertices in a directed graph G with non-negative edge weights. The replacement paths problem asks us to compute, for each edge e in G, the length of the shortest path from s to t that does not traverse e. We describe an algorithm that solves the replacement paths problem for directed graphs embedded on a surface of any genus g in O(gn log n) time, generalizing a recent O(n log n)-time algorithm of Wulff-Nilsen for planar graphs [SODA 2010].