Classification enhancement via biometric pattern perturbation

  • Authors:
  • Terry Riopka;Terrance Boult

  • Affiliations:
  • Dept. of Computer Science and Engineering, Lehigh University, Bethlehem, PA;Computer Science Dept, University of Colorado at Colorado Springs, Colorado Springs, CO

  • Venue:
  • AVBPA'05 Proceedings of the 5th international conference on Audio- and Video-Based Biometric Person Authentication
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a novel technique for improving face recognition performance by predicting system failure, and, if necessary, perturbing eye coordinate inputs and repredicting failure as a means of selecting the optimal perturbation for correct classification. This relies on a method that can accurately identify patterns that can lead to more accurate classification, without modifying the classification algorithm itself. To this end, a neural network is used to learn 'good' and 'bad' wavelet transforms of similarity score distributions from an analysis of the gallery. In production, face images with a high likelihood of having been incorrectly matched are reprocessed using perturbed eye coordinate inputs, and the best results used to “correct” the initial results. The overall approach suggest a more general approach involving the use of input perturbations for increasing classifier performance in general. Results for both commercial and research face-based biometrics are presented using both simulated and real data. The statistically significant results show the strong potential for this to improve system performance, especially with uncooperative subjects.