Efficient solution of bidomain equations in simulation of cardiac excitation anisotropic propagation

  • Authors:
  • Yu Zhang;Ling Xia;Guanghuan Hou

  • Affiliations:
  • Department of Biomedical Engineering, Zhejiang University, Hangzhou, China;Department of Biomedical Engineering, Zhejiang University, Hangzhou, China;Department of Mathematics, Zhejiang University, Hangzhou, China

  • Venue:
  • ICIC'06 Proceedings of the 2006 international conference on Computational Intelligence and Bioinformatics - Volume Part III
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Bidomain equations are used to characterize myocardial physiological activation and propagation. Their numerical solution is costly computation because of the higher temporal and spatial discretization requirements, especially in three dimensions. In most previous studies, the heart was supposed to be homogeneous isotropic medium, and thus can use the mondomain equation in stead of the bidomain equations to simulate the heart excitation propagation. Simulation of heart excitation anisotropic propagation in three-dimensional large tissue size by solving bidomain equations has not been implemented yet. In this paper, we present an efficient solution of bidomain equations in simulation of heart excitation anisotropic propagation by combining some numerical techniques such as non-standard finite difference (NSFD), domain decomposition and multigrid methods. The results show that the proposed method can successfully be used to simulate heart excitation anisotropic propagation in three-dimensional large tissue size, and it suggests that such method may provide a good basis for heart simulation research in a more physiologically way.