The complexity of counting functions with easy decision version

  • Authors:
  • Aris Pagourtzis;Stathis Zachos

  • Affiliations:
  • Department of Computer Science, School of ECE, National Technical University of Athens, Greece;,Department of Computer Science, School of ECE, National Technical University of Athens, Greece

  • Venue:
  • MFCS'06 Proceedings of the 31st international conference on Mathematical Foundations of Computer Science
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We investigate the complexity of counting problems that belong to the complexity class #P and have an easy decision version. These problems constitute the class #PE which has some well-known representatives such as #Perfect Matchings, #DNF-Sat, and NonNegative Permanent. An important property of these problems is that they are all #P-complete, in the Cook sense, while they cannot be #P-complete in the Karp sense unless P = NP. We study these problems in respect to the complexity class TotP, which contains functions that count the number of all paths of a PNTM. We first compare TotP to #P and #PE and show that FP⊆TotP⊆#PE⊆#P and that the inclusions are proper unless P = NP. We then show that several natural #PE problems — including the ones mentioned above — belong to TotP. Moreover, we prove that TotP is exactly the Karp closure of self-reducible functions of #PE. Therefore, all these problems share a remarkable structural property: for each of them there exists a polynomial-time nondeterministic Turing machine which has as many computation paths as the output value.