Feature-Discovering approximate value iteration methods

  • Authors:
  • Jia-Hong Wu;Robert Givan

  • Affiliations:
  • Electrical and Computer Engineering, Purdue University, W. Lafayette, IN;Electrical and Computer Engineering, Purdue University, W. Lafayette, IN

  • Venue:
  • SARA'05 Proceedings of the 6th international conference on Abstraction, Reformulation and Approximation
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Sets of features in Markov decision processes can play a critical role in approximately representing value and in abstracting the state space. Selection of features is crucial to the success of a system and is most often conducted by a human. We study the problem of automatically selecting problem features, and propose and evaluate a simple approach reducing the problem of selecting a new feature to standard classification learning. We learn a classifier that predicts the sign of the Bellman error over a training set of states. By iteratively adding new classifiers as features with this method, training between iterations with approximate value iteration, we find a Tetris feature set that outperforms randomly constructed features significantly, and obtains a score of about three-tenths of the highest score obtained by using a carefully hand-constructed feature set. We also show that features learned with this method outperform those learned with the previous method of Patrascu et al. [4] on the same SysAdmin domain used for evaluation there.