Relationships between diffie-hellman and “index oracles”

  • Authors:
  • Adam Young;Moti Yung

  • Affiliations:
  • Cigital, Inc;Dept. of Computer Science, Columbia University

  • Venue:
  • SCN'04 Proceedings of the 4th international conference on Security in Communication Networks
  • Year:
  • 2004

Quantified Score

Hi-index 0.01

Visualization

Abstract

The Computational Diffie-Hellman problem and its decisional variant are at the heart of many cryptographic applications. Yet, their exact computational power and their relationship to the Discrete Logarithm problem and the Decision Diffie-Hellman problem (DDH) is not fully understood in all settings. In order to extend the current understanding of the problem we introduce a new decision problem that we call the Jacobi Discrete Logarithm problem. We argue that this is a natural problem and we analyze it in groups in which Decision Diffie-Hellman (DDH) is believed to be intractable. In short, the JDL problem is to return the Jacobi symbol of the exponent x in gx. We show that JDL is random self-reducible and that it lies in between the Computational Diffie-Hellman (CDH) problem and DDH. Our analysis involves the notion of a powering oracle. Maurer and Wolf showed that a squaring oracle that returns $g^{u^2}$ on input gu is actually equivalent to a DH oracle. It is weaker in the sense that it can be posed as a specialized DH oracle that need only respond correctly when u = v. In this paper we extend the study of the relationships between Diffie-Hellman and oracles for problems which manipulate or give partial information about the index of their input. We do so by presenting a reduction that shows that a powering oracle that responds with $g^{u^a} mod P$ when given gu for an unknown a that is poly-logarithmic in p, is equivalent to DH. Technically, our reduction utilizes the inverse of a particular type of Vandermonde matrix. This inverse matrix has recursively defined entries. Implications for large values of a are also given.