Complexity results on branching-time pushdown model checking

  • Authors:
  • Laura Bozzelli

  • Affiliations:
  • Università di Napoli Federico II, Napoli, Italy

  • Venue:
  • VMCAI'06 Proceedings of the 7th international conference on Verification, Model Checking, and Abstract Interpretation
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

The model checking problem of pushdown systems (PMC problem, for short) against standard branching temporal logics has been intensively studied in the literature. In particular, for the modal μ-calculus, the most powerful branching temporal logic used for verification, the problem is known to be Exptime-complete (even for a fixed formula). The problem remains Exptime-complete also for the logic CTL, which corresponds to a fragment of the alternation-free modal μ-calculus. However, the exact complexity in the size of the pushdown system (for a fixed CTL formula) is an open question: it lies somewhere between Pspace and Exptime. To the best of our knowledge, the PMC problem for CTL* has not been investigated so far. In this paper, we show that this problem is 2Expspace-complete. Moreover, we prove that the program complexity of the PMC problem against CTL (i.e., the complexity of the problem in terms of the size of the system) is Exptime-complete.