Impact of traffic load on SCTP failovers in SIGTRAN

  • Authors:
  • Karl-Johan Grinnemo;Anna Brunstrom

  • Affiliations:
  • TietoEnator AB, Karlstad, Sweden;Dept. of Computer Science, Karlstad University, Karlstad, Sweden

  • Venue:
  • ICN'05 Proceedings of the 4th international conference on Networking - Volume Part I
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

With Voice over IP (VoIP) emerging as a viable alternative to the traditional circuit-switched telephony, it is vital that the two are able to intercommunicate. To this end, the IETF Signaling Transport (SIGTRAN) group has defined an architecture for seamless transportation of SS7 signaling traffic between a VoIP network and a traditional telecom network. However, at present, it is unclear if the SIGTRAN architecture will, in reality, meet the SS7 requirements, especially the stringent availability requirements. The SCTP transport protocol is one of the core components of the SIGTRAN architecture, and its failover mechanism is one of the most important availability mechanisms of SIGTRAN. This paper studies the impact of traffic load on the SCTP failover performance in an M3UA-based SIGTRAN network. The paper shows that cross traffic, especially bursty cross traffic such as SS7 signaling traffic, could indeed significantly deteriorate the SCTP failover performance. Furthermore the paper stresses the importance of configuring routers in a SIGTRAN network with relatively small queues. For example, in tests with bursty cross traffic, and with router queues twice the bandwidth-delay product, failover times were measured which were more than 50% longer than what was measured with no cross traffic at all. Furthermore, the paper also identifies some properties of the SCTP failover mechanism that could, in some cases, significantly degrade its performance.