Conceptual modeling of genetic studies and pharmacogenetics

  • Authors:
  • Xiaohua Zhou;Il-Yeol Song

  • Affiliations:
  • College of Information Science and Technology, Drexel University, Philadelphia, PA;College of Information Science and Technology, Drexel University, Philadelphia, PA

  • Venue:
  • ICCSA'05 Proceedings of the 2005 international conference on Computational Science and Its Applications - Volume Part III
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Genetic Studies examine relationships between genetic variation and disease development. Pharmacogenetics studies the responses to drugs against genetic variation. These two lines of research evaluate relationships among genotype, phenotype, and environment regarding subjects. These studies demand a variety of other information; such as clinical observations, disease development history, demographics, life style, and living environment. Correct and informative modeling of these data is critical for bioinformaticians; the model affects the capacity of data manipulation and the types of queries they can ask as well as performance of the implemented system. In this paper, we present a conceptual model on genetic studies and Pharmacogenetics using Unified Modeling Language (UML). Our model provides a comprehensive view of integrated data for genetic studies and Pharmacogenetics by incorporating genomics, experimental data, domain knowledge, research approaches, and interface data for other publicly available resources into one cohesive model. Our model can support diverse biomedical research activities that use both clinical and biomedical data to improve patient care through incorporation of the roles of environment, life style and genetics. Our model consists of a set of class diagrams organized into a hierarchy of packages diagrams to clearly and intuitively show inter-object relationships at different levels of complexity.