Coordinated control for highly reconfigurable systems

  • Authors:
  • Markus P. J. Fromherz;Lara S. Crawford;Haitham A. Hindi

  • Affiliations:
  • Palo Alto Research Center, Palo Alto, CA;Palo Alto Research Center, Palo Alto, CA;Palo Alto Research Center, Palo Alto, CA

  • Venue:
  • HSCC'05 Proceedings of the 8th international conference on Hybrid Systems: computation and control
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The remarkable drop in the cost of embedded computing, sensing, and actuation is creating an explosion in applications for embedded software. As manufacturers make use of these technologies, they attempt to reduce complexity and contain cost by modularizing their systems and building reconfigurable products from simpler but smarter components. Of particular interest have recently been highly reconfigurable systems, i.e., systems that can be customized, repaired, and upgraded at a fine level of granularity throughout their lifetime. High reconfigurability is putting new demands on the software that is dynamically calibrating, controlling, and coordinating the operations of the system's modules. There is much promise in existing software approaches, in particular in model-based approaches; however, current techniques face a number of new challenges before they can be embedded in the kind of real-time, distributed, and dynamic environment found in highly reconfigurable systems. Here, we discuss challenges, solutions, and lessons learned in the context of a long-term project at PARC to bring such techniques to a highly reconfigurable paper path system.