A formal enforcement framework for role-based access control using aspect-oriented programming

  • Authors:
  • Jaime Pavlich-Mariscal;Laurent Michel;Steven Demurjian

  • Affiliations:
  • Department of Computer Science & Engineering, The University of Connecticut, Unit-2155, Storrs, CT;Department of Computer Science & Engineering, The University of Connecticut, Unit-2155, Storrs, CT;Department of Computer Science & Engineering, The University of Connecticut, Unit-2155, Storrs, CT

  • Venue:
  • MoDELS'05 Proceedings of the 8th international conference on Model Driven Engineering Languages and Systems
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many of today's software applications require a high-level of security, defined by a detailed policy and attained via mechanisms such as role-based access control (RBAC), mandatory access control, digital signatures, etc. The integration of the design/implementation processes of access-control policies with runtime enforcement mechanisms is crucial to achieve an acceptable level of security for a software application. Our prior research focused on formalizing the concept of a role slice, which is a unified modeling language (UML) artifact that captures RBAC security requirements by defining permissions in the form of allowable or prohibited methods, and by specifying roles as specialized class diagrams that contain those methods. This paper augments this effort by introducing a formal framework for the security of software applications that supports the automatic translation of a role-slice access-control policy (RBAC requirements) into aspect-oriented programming (AOP) enforcement code that is seamlessly integrated with the application. The formal framework provides the necessary underpinnings to automate the integration of security policies into software. A prototyping effort based on Borland's UML tool Together Control Center for defining role-slice diagrams and the associated AOP code generator is under development.