Discontinuity preserving phase unwrapping using graph cuts

  • Authors:
  • José M. Bioucas-Dias;Gonçalo Valadão

  • Affiliations:
  • Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal;Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal

  • Venue:
  • EMMCVPR'05 Proceedings of the 5th international conference on Energy Minimization Methods in Computer Vision and Pattern Recognition
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a new algorithm for recovering the absolute phase from modulo-2π phase, the so-called phase unwrapping (PU) problem. PU arises as a key step in several imaging technologies, from which we emphasize interferometric synthetic aperture radar/sonar (InSAR/SAS), magnetic resonance imaging (MRI), and optical interferometry. We adopt a discrete energy minimization viewpoint, where the objective function is a first-order Markov random field. The minimization problem is dealt with via a binary iterative scheme, with each iteration step cast onto a graph cut based optimization problem. For convex clique potentials we provide an exact energy minimization algorithm; namely we solve exactly the PU classical Lp norm, with p ≥ 1. For nonconvex clique potentials, it is well known that PU performance is particularly enhanced, namely, the discontinuity preserving ability; however the problem is NP-hard. Accordingly, we provide an approximate algorithm, which is a modified version of the first proposed one. For simplicity we call both algorithms PUMF, for Phase Unwrapping Max-Flow. The state-of-the-art competitiveness of PUMF is illustrated in a series of experiments.