Fast high-resolution appearance editing using superimposed projections

  • Authors:
  • Daniel G. Aliaga;Yu Hong Yeung;Alvin Law;Behzad Sajadi;Aditi Majumder

  • Affiliations:
  • Purdue University;Purdue University;Purdue University;University of California, Irvine;University of California, Irvine

  • Venue:
  • ACM Transactions on Graphics (TOG)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a system that superimposes multiple projections onto an object of arbitrary shape and color to produce high-resolution appearance changes. Our system produces appearances at an improved resolution compared to prior works and can change appearances at near interactive rates. Three main components are central to our system. First, the problem of computing compensation images is formulated as a constrained optimization which yields high-resolution appearances. Second, decomposition of the target appearance into base and scale images enables fast swapping of appearances on the object by requiring the constrained optimization to be computed only once per object. Finally, to make high-quality appearance edits practical, an elliptical Gaussian is used to model projector pixels and their interaction between projectors. To the best of our knowledge, we build the first system that achieves high-resolution and high-quality appearance edits using multiple superimposed projectors on complex nonplanar colored objects. We demonstrate several appearance edits including specular lighting, subsurface scattering, inter-reflections, and color, texture, and geometry changes on objects with different shapes and colors.